Bus Stop Method Division: 4-Digit Numbers by 1-Digit Numbers with Remainders

LO: I can use a formal method of division

Look at the following calculations. Decide if you think there will be a remainder and explain your reasoning. Then solve the calculation to check.

Explain your answer.

Check your answer

Explain your answer.

Check your answer

Bus Stop Method Division: 4-Digit Numbers by 1-Digit Numbers with Remainders **Answers**

LO: I can use a formal method of division

1. $1468 \div 3 = 489.33$

9. 4521 ÷ 8 = **565.12**

2. $3452 \div 5 = 690.4$

10. $2804 \div 5 =$ **560.8**

3. $7489 \div 4 = 1872.25$

11. $6321 \div 6 =$ **1053.5**

4. 1957 ÷ 6 = **326.16**

12. $5407 \div 3 = 1802.33$

5. $3652 \div 7 =$ **521.71**

13. $3648 \div 7 = 521.14$

6. $5239 \div 4 = 1309.75$

14. 1357 ÷ 8 = **169.62**

7. $5269 \div 9 = 585.44$

15. $4635 \div 4 = 1158.75$

8. $7652 \div 3 = 2550.66$

16. $3165 \div 4 = 791.25$

Look at the following calculations. Decide if you think there will be a remainder and explain your reasoning. Then solve the calculation to check.

17. 3204 ÷ 5

Will there be a remainder?

Explain your answer.

I think there will be a remainder because the last digit of the number being divided is 4 which is not a multiple of 5 therefore there will be a remainder. If the number ended in 0 or 5 there would not be a remainder.

Check your answer

3204 ÷ 5 = **640.8**

18. 3321 ÷ 3

Will there be a remainder?

Yes / No

Explain your answer.

I don't think there will be a remainder because the sum of all the digits is 9 which is a multiple of 3, e.g. 3+3+2+1=9

Check your answer

3321 ÷ 3 = **1107**

